GATA3 and NeuroD distinguish auditory and vestibular neurons during development of the mammalian inner ear

نویسندگان

  • Grace Lawoko-Kerali
  • Marcelo N Rivolta
  • Patrick Lawlor
  • Daniela I Cacciabue-Rivolta
  • Claire Langton-Hewer
  • J Hikke van Doorninck
  • Matthew C Holley
چکیده

The function of the zinc finger transcription factor GATA3 was studied in a newly established, conditionally immortal cell line derived to represent auditory sensory neuroblasts migrating from the mouse otic vesicle at embryonic day E10.5. The cell line, US/VOT-33, expressed GATA3, the bHLH transcription factor NeuroD and the POU-domain transcription factor Brn3a, as do auditory neuroblasts in vivo. When GATA3 was knocked down reversibly with antisense oligonucleotides, NeuroD was reversibly down-regulated. Auditory and vestibular neurons form from neuroblasts that express NeuroD and that migrate from the antero-ventral, otic epithelium at E9.5-10.5. On the medial side, neuroblasts and epithelial cells express GATA3 but on the lateral side they do not. At E13.5 most auditory neurons express GATA3 but no longer express NeuroD, whereas vestibular neurons express NeuroD but not GATA3. Neuroblasts expressing NeuroD and GATA3 were located in the ventral, otic epithelium, the adjacent mesenchyme and the developing auditory ganglion. The results suggest that auditory and vestibular neurons arise from different, otic epithelial domains and that they gain their identity prior to migration. In auditory neuroblasts, NeuroD appears to be dependent on the expression of GATA3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Expression of Sox2, Gata3, and Prox1 during Primary Auditory Neuron Development in the Mammalian Cochlea

Primary auditory neurons (PANs) connect cochlear sensory hair cells in the mammalian inner ear to cochlear nucleus neurons in the brainstem. PANs develop from neuroblasts delaminated from the proneurosensory domain of the otocyst and keep maturing until the onset of hearing after birth. There are two types of PANs: type I, which innervate the inner hair cells (IHCs), and type II, which innervat...

متن کامل

Therapeutic potential of cell therapy in the repair of hair cells and spiral ganglion neurons: review article

The mammalian cochlea is a highly complex structure which contains several cells, including sensory receptor or hair cells. The main function of the cochlear hair cells is to convert the mechanical vibrations of the sound into electrical signals, then these signals travel to the brain along the auditory nerve. Auditory hair cells in some amphibians, reptiles, fish, and birds can regenerate or r...

متن کامل

Potential of Pluripotent Stem Cells for the Replacement of Inner Ears

The inner ear, which manages our senses of hearing and balance, has mechanosensitive hair cells, which convert vibration into electronic signal to depolarize auditory or vestibular neurons. Inner ear functions depend largely on hair cells, their associated neurons and cochlear lateral wall, and defects in these cells result in hearing loss and deafness. Although some investigations indicated ha...

متن کامل

GATA Factors Regulate Inner Ear Development and Midbrain Neurogenesis

................................................................................................................................7 Abbreviations........................................................................................................................8 1 Review of the literature .............................................................................................. 10 1.1 Fun...

متن کامل

Comparative analysis of Gata3 and Gata2 expression during chicken inner ear development.

The inner ear is a complex sensory organ with hearing and balance functions. Gata3 and Gata2 are expressed in the inner ear, and to gain more insight into their roles in otic development, we made a detailed expression analysis in chicken embryos. At early stages, their expression was highly overlapping. At later stages, Gata2 expression became prominent in vestibular and cochlear nonsensory epi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mechanisms of Development

دوره 121  شماره 

صفحات  -

تاریخ انتشار 2004